Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(S)-2-(1-Benzyl-5-bromo-1*H*-indol-3-yl)-2-hydroxy-N-methylacetamide

Hai-Hua Lu, Cai-Bao Chen and Hong-Ming Dong*

Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail: donghongming@mails.ccnu.edu.cn

Received 30 March 2007; accepted 27 May 2007

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.029; wR factor = 0.063; data-to-parameter ratio = 16.2.

The title compound, C₁₈H₁₇BrN₂O₂, is a chiral indole derivative. The crystal structure shows both intra- and intermolecular hydrogen-bonding interactions.

Related literature

For related literature, see: Bandini et al. (2005); Ramirez & Garcia-Rubio (2003); Yuan et al. (2004).

Experimental

Crystal data

C18H17BrN2O2 $M_r = 373.25$ Monoclinic, P2 a = 4.5759 (6) Å b = 9.4134 (11) Å c = 18.540 (2) Å $\beta = 95.049 \ (2)^{\circ}$

 $V = 795.51 (17) \text{ Å}^3$ Z = 2Mo $K\alpha$ radiation $\mu = 2.60 \text{ mm}^{-1}$ T = 296 (2) K $0.20 \times 0.20 \times 0.10$ mm

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2001a) $T_{\min} = 0.625, T_{\max} = 0.781$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	H atoms t
$wR(F^2) = 0.063$	indeper
S = 0.95	refinem
3482 reflections	$\Delta \rho_{\rm max} = 0$
215 parameters	$\Delta \rho_{\min} = -$
1 restraint	Absolute
	1456 Fr

5321 measured reflections 3482 independent reflections 2936 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.021$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.32 \ {\rm e} \ {\rm \AA}^{-3}$
Absolute structure: Flack (1983),
1456 Friedel pairs
Flack parameter: 0.015 (7)

Table 1 Hydrogen-bond geometry (Å, °).

 $-x + 2, y + \frac{1}{2}, -z + 1.$

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} N2 - H2A \cdots O1 \\ C18 - H18C \cdots O1^{i} \\ N2 - H2A \cdots O2^{ii} \\ O1 - H1 \cdots O2^{iii} \end{array}$	0.87 (3) 0.96 0.87 (3) 0.91 (4)	2.32 (3) 2.57 2.40 (3) 2.02 (4)	2.682 (3) 3.395 (3) 3.119 (3) 2.839 (2)	105 (2) 144 139 (3) 149 (3)
Symmetry codes: (i	i) $-r + 1 v - $	$\frac{1}{2} - 7 + 1$ (ii)	$-r + 1 v + \frac{1}{2}$	-z + 1 (iii)

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2001b) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.

The authors are grateful to the Central China Normal University and Professor Wen-Jing Xiao.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2117).

References

- Bandini, M., Melloni, A., Tommasi, S. & Umani-Ronchi, A. (2005). Synlett, pp. 1199-1222
- Bruker (1997). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA
- Bruker (1999). SAINT. Version 6.01. Bruker AXS Inc., Madison, Wisconsin, USA
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Ramirez, A. & Garcia-Rubio, S. (2003). Curr. Med. Chem. 10, 1891-1915.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany,
- Sheldrick, G. M. (2001a). SADABS. Version 2.03. University of Göttingen, Germany
- Sheldrick, G. M. (2001b). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Yuan, Y., Wang, X., Li, X. & Ding, K. (2004). J. Org. Chem. 69, 146-149.

supplementary materials

Acta Cryst. (2007). E63, o3261 [doi:10.1107/S1600536807025767]

(S)-2-(1-Benzyl-5-bromo-1*H*-indol-3-yl)-2-hydroxy-N-methylacetamide

H.-H. Lu, C.-B. Chen and H.-M. Dong

Comment

Derivatives of indole have received much attention because of their widespread applications in materials science, agrichemicals, and pharmaceuticals (Ramirez & Garcia-Rubio, 2003). Their preparation and functionalization continues to be a fascinating subject in organic synthesis due to the frequent appearance of indoles in biologically interesting compounds (Bandini *et al.*, 2005). The title compound, an example of a derivatized indole core, is shown in Figure 1. In the crystal, C—H···O hydrogen bonds, (Table 1) link the molecules in rows along the *c* axis (Fig. 2)

Experimental

The title compound was synthesized according to procedure of Yuan *et al.*, 2004. Crystals appropriate for data collection were obtained by slow evaporation of a CH_3COCH_3/C_6H_6 (100:1, v/v) solution at 283 K.

Refinement

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry with C—H distances of 0.98 Å and $U_{iso}(H) = 1.5U_{eq}(C)$, but each group was allowed to rotate freely about its C—C bond. All other H atoms bonded to carbon were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.95–1.00 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The O—H and N—H H atom coordinates were allowed to refine but the thermal parameters were fixed.

Figures

Fig. 1. The structure of (I), showing the atom-labelling scheme and thermal ellipsoids at the 50% probability level.

Fig. 2. The molecular packing of (I) viewed along the c axis. Hydrogen bonds are drawn as dashed lines.

(S)-2-(1-Benzyl-5-bromo-1*H*-indol-3-yl)-2-hydroxy-*N*- methylacetamide

Crystal data	
$C_{18}H_{17}BrN_2O_2$	$F_{000} = 380$
$M_r = 373.25$	$D_{\rm x} = 1.558 {\rm Mg} {\rm m}^{-3}$
Monoclinic, <i>P</i> 2 ₁	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 2442 reflections
<i>a</i> = 4.5759 (6) Å	$\theta = 0.00 - 0.00^{\circ}$
b = 9.4134 (11) Å	$\mu = 2.60 \text{ mm}^{-1}$
c = 18.540 (2) Å	T = 296 (2) K
$\beta = 95.049 \ (2)^{\circ}$	Block, colorless
$V = 795.51 (17) \text{ Å}^3$	$0.20 \times 0.20 \times 0.10 \text{ mm}$
Z = 2	

Data collection

Bruker SMART CCD area-detector diffractometer	3482 independent reflections
Radiation source: fine-focus sealed tube	2936 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.021$
T = 296(2) K	$\theta_{\text{max}} = 28.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.2^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2001a)	$h = -6 \rightarrow 5$
$T_{\min} = 0.625, T_{\max} = 0.781$	$k = -11 \rightarrow 12$
5321 measured reflections	$l = -22 \rightarrow 24$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.029$	$w = 1/[\sigma^2(F_o^2)]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.063$	$(\Delta/\sigma)_{\text{max}} = 0.002$
<i>S</i> = 0.95	$\Delta \rho_{max} = 0.40 \text{ e } \text{\AA}^{-3}$
3482 reflections	$\Delta \rho_{\rm min} = -0.32 \ {\rm e} \ {\rm \AA}^{-3}$
215 parameters	Extinction correction: none
1 restraint	Absolute structure: Flack (1983), 1456 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.015 (7)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ \boldsymbol{Z} х y Br1 0.06370(11) 1.14694 (7) -0.31988(3)0.737099 (16) 0.0391 (6) C1 0.6534 (6) 0.0039(3)0.81575 (12) 0.047* H1A 0.5425 0.0180 0.8548 C2 0.8019 (6) 0.0433 (6) -0.1216(3)0.80734 (13) H2 0.7932 0.052* -0.19360.8414 C3 0.9654 (6) -0.1411(3)0.74796 (13) 0.0391(5)C4 0.9924(5)-0.0383(2)0.0341 (5) 0.69649 (12) H4 1.1062 -0.05340.041*0.6580 C5 0.8429(5)0.0900(2)0.70371 (11) 0.0298(5)C6 0.6757 (5) 0.1082(3)0.76376 (12) 0.0318 (5) C7 0.8163 (5) 0.2179(2) 0.66256 (11) 0.0317 (5) C8 0.6355(5)0.3059(3)0.69713 (12) 0.0357(5)H8 0.5795 0.3967 0.6817 0.043* C9 0.3612 (5) 0.3018 (3) 0.81004 (12) 0.0403 (5) 0.048* H9A 0.2210 0.2306 0.8225 H9B 0.2518 0.3806 0.7874 0.048* C10 0.5304 (5) 0.3531 (3) 0.87805 (12) 0.0362 (5) C11 0.7243 (6) 0.4648 (3) 0.87613 (14) 0.0482 (6) H11 0.7512 0.5078 0.8320 0.058* C12 0.8776(7) 0.5135 (4) 0.93757 (19) 0.0689 (9) H12 1.0081 0.5887 0.9350 0.083* C13 0.8399 (8) 0.4520 (5) 1.00341 (18) 0.0757 (11) H13 0.9437 0.4858 1.0453 0.091* C14 0.6496 (9) 0.3411 (4) 1.00709 (15) 0.0733(11)H14 0.6246 0.2985 1.0514 0.088* C15 0.4936(7) 0.2922 (3) 0.94434 (13) 0.0545 (7) H15 0.3624 0.2173 0.9470 0.065* C16 0.9457 (5) 0.2509(2) 0.59302 (12) 0.0352 (5) H16 1.1449 0.2120 0.5951 0.042* C17 0.7595 (5) 0.1810 (3) 0.53065 (10) 0.0338 (4) C18 0.3941 (7) 0.2177 (3) 0.42835 (13) 0.0538 (8) H18A 0.081* 0.5083 0.1786 0.3921 0.081* H18B 0.2787 0.2955 0.4081

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H18C	0.2667	0.1457	0.4446	0.081*
H1	1.088 (8)	0.418 (4)	0.5528 (18)	0.081*
H2A	0.572 (7)	0.358 (3)	0.4998 (16)	0.065*
N1	0.5491 (5)	0.2407 (2)	0.75786 (10)	0.0357 (5)
N2	0.5881 (5)	0.2677 (2)	0.48896 (11)	0.0400 (5)
01	0.9600 (4)	0.40069 (17)	0.58655 (9)	0.0473 (4)
O2	0.7673 (4)	0.05083 (18)	0.52216 (9)	0.0470 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0778 (2)	0.03513 (14)	0.0805 (2)	0.01527 (16)	0.02007 (15)	0.01439 (16)
C1	0.0485 (15)	0.0387 (14)	0.0309 (11)	-0.0056 (11)	0.0081 (11)	0.0018 (10)
C2	0.0576 (16)	0.0373 (14)	0.0348 (12)	-0.0030 (12)	0.0021 (11)	0.0105 (10)
C3	0.0440 (14)	0.0296 (12)	0.0428 (13)	0.0029 (10)	-0.0012 (11)	0.0021 (10)
C4	0.0362 (12)	0.0327 (12)	0.0333 (11)	-0.0003 (9)	0.0023 (10)	-0.0031 (9)
C5	0.0320 (12)	0.0310 (12)	0.0260 (11)	-0.0047 (9)	0.0010 (9)	-0.0029 (9)
C6	0.0364 (14)	0.0324 (13)	0.0262 (11)	-0.0044 (10)	0.0001 (10)	-0.0015 (10)
C7	0.0372 (12)	0.0282 (13)	0.0295 (11)	-0.0015 (8)	0.0017 (9)	-0.0013 (8)
C8	0.0437 (14)	0.0301 (12)	0.0329 (12)	0.0022 (10)	0.0010 (10)	-0.0012 (10)
C9	0.0381 (13)	0.0436 (14)	0.0400 (13)	0.0040 (11)	0.0082 (10)	-0.0024 (11)
C10	0.0405 (13)	0.0346 (13)	0.0347 (12)	0.0062 (10)	0.0096 (10)	-0.0053 (10)
C11	0.0534 (17)	0.0466 (16)	0.0447 (14)	-0.0031 (13)	0.0046 (13)	-0.0055 (12)
C12	0.0581 (19)	0.065 (2)	0.081 (2)	-0.0043 (16)	-0.0046 (17)	-0.0260 (18)
C13	0.078 (2)	0.086 (3)	0.058 (2)	0.036 (2)	-0.0207 (18)	-0.0336 (19)
C14	0.113 (3)	0.077 (3)	0.0312 (15)	0.044 (2)	0.0104 (17)	0.0035 (15)
C15	0.075 (2)	0.0504 (17)	0.0411 (15)	0.0064 (16)	0.0212 (14)	0.0033 (13)
C16	0.0404 (13)	0.0287 (12)	0.0371 (12)	-0.0001 (10)	0.0070 (10)	0.0034 (9)
C17	0.0456 (11)	0.0293 (10)	0.0283 (9)	0.0020 (13)	0.0135 (9)	0.0016 (12)
C18	0.0660 (17)	0.058 (2)	0.0360 (12)	-0.0011 (13)	-0.0042 (12)	0.0037 (11)
N1	0.0426 (12)	0.0356 (11)	0.0297 (10)	0.0011 (10)	0.0072 (9)	-0.0021 (8)
N2	0.0551 (13)	0.0321 (11)	0.0327 (10)	0.0015 (10)	0.0028 (9)	0.0017 (9)
01	0.0682 (12)	0.0299 (10)	0.0453 (9)	-0.0101 (9)	0.0148 (9)	0.0029 (7)
O2	0.0721 (13)	0.0283 (9)	0.0405 (9)	0.0045 (9)	0.0045 (9)	-0.0032 (7)

Geometric parameters (Å, °)

Br1—C3	1.895 (2)	C10—C15	1.380 (3)
C1—C2	1.378 (4)	C11—C12	1.363 (4)
C1—C6	1.386 (3)	C11—H11	0.9300
C1—H1A	0.9300	C12—C13	1.376 (5)
C2—C3	1.397 (4)	C12—H12	0.9300
С2—Н2	0.9300	C13—C14	1.365 (5)
C3—C4	1.372 (3)	С13—Н13	0.9300
C4—C5	1.400 (3)	C14—C15	1.389 (5)
C4—H4	0.9300	C14—H14	0.9300
C5—C6	1.416 (3)	C15—H15	0.9300
С5—С7	1.425 (3)	C16—O1	1.418 (3)
C6—N1	1.375 (3)	C16—C17	1.524 (3)

С7—С8	1.369 (3)	С16—Н16	0.9800
C7—C16	1.498 (3)	C17—O2	1.236 (4)
C8—N1	1.371 (3)	C17—N2	1.331 (3)
С8—Н8	0.9300	C18—N2	1.448 (3)
C9—N1	1.467 (3)	C18—H18A	0.9600
C9—C10	1.500 (3)	C18—H18B	0.9600
С9—Н9А	0.9700	C18—H18C	0.9600
С9—Н9В	0.9700	N2—H2A	0.87 (3)
C10—C11	1.378 (4)	O1—H1	0.91 (4)
C2—C1—C6	117.5 (2)	C10—C11—H11	119.3
C2—C1—H1A	121.3	C11—C12—C13	120.3 (3)
C6—C1—H1A	121.3	C11—C12—H12	119.9
C1 - C2 - C3	120.4(2)	C13—C12—H12	119.9
C1 - C2 - H2	119.8	C14 - C13 - C12	119.8 (3)
C3—C2—H2	119.8	C14—C13—H13	120.1
C4-C3-C2	122.9(2)	C12—C13—H13	120.1
C4-C3-Br1	119.02 (18)	C13 - C14 - C15	119.6 (3)
C^2 — C^3 — $Br1$	118 10 (18)	C13—C14—H14	120.2
C_{3} C_{4} C_{5}	117.9 (2)	C15-C14-H14	120.2
$C_3 - C_4 - H_4$	121.1	C10-C15-C14	120.2 121.0(3)
C_{5} C_{4} H_{4}	121.1	C10-C15-H15	119.5
C4-C5-C6	121.1 118.8(2)	C14—C15—H15	119.5
$C_{4} = C_{5} = C_{7}$	1342(2)	01 - C16 - C7	107.67 (18)
C6-C5-C7	107.0(2)	01 - C16 - C17	107.07(10) 113.1(2)
N1-C6-C1	107.0(2) 129.9(2)	C7 - C16 - C17	119.1(2) 100.08(18)
N1C6C5	127.7(2)	01H16	109.00 (10)
C1 - C6 - C5	107.5 (2)	C7-C16-H16	109.0
$C_{1} = C_{0} = C_{3}$	122.0(2) 106.69(19)	C_{17} C_{16} H_{16}	109.0
$C_{8}^{8} - C_{7}^{7} - C_{16}^{16}$	125 3 (2)	02-017-N2	109.0
$C_{5} - C_{7} - C_{16}$	127.91 (19)	02 - 017 - 016	123.0(2) 120.3(2)
$C_{7} = C_{8} = N_{1}$	127.91(19)	$N_2 - C_{17} - C_{16}$	120.3(2) 116.0(2)
C7 - C8 - H8	125.0	$N_2 - C_{18} - H_{18A}$	100.5
N1_C8_H8	125.0	N2_C18_H18B	109.5
N1 = C9 = C10	123.0 113.0(2)	H_{18}^{-} $-C_{18}^{-}$ H_{18}^{-} $H_$	109.5
N1 = C9 = C10	113.0 (2)	N2 C18 H18C	109.5
C10 - C9 - H9A	109.0	$H_{2} = C_{13} = H_{18}C$	109.5
N1_C9_H9B	109.0	$H_{18B} - C_{18} - H_{18C}$	109.5
C10 - C9 - H9B	109.0		109.5 108.7(2)
	107.8	C_{3} N1 C_{9}	106.7(2) 126.5(2)
$117A - C_{2} - 117B$	107.8	$C_{0} = N_{1} = C_{0}$	120.3(2) 124.8(2)
$C_{11} = C_{10} = C_{13}$	110.0(2) 120.7(2)	$C_{17} N_{2} C_{18}$	124.0(2) 122.7(2)
$C_{11} = C_{10} = C_{9}$	120.7(2) 121.3(2)	C17 = N2 = C18	122.7(2) 121(2)
$C_{13} = C_{10} = C_{9}$	121.3(2) 121.2(2)	C17 - N2 - H2A	121(2) 116(2)
C12 C11 H11	110.3	$C_{10} = 112 - 112 A$	10(2)
	117.3		100 (2)
C6-C1-C2-C3	-0.5(4)	C11-C12-C13-C14	0.4 (5)
C1 - C2 - C3 - C4	1.5 (4)	C12—C13—C14—C15	-0.6 (5)
C1—C2—C3—Br1	-1/6.7(2)	C11—C10—C15—C14	-0.7 (4)
C2—C3—C4—C5	-1.4 (4)	C9—C10—C15—C14	-179.5 (2)

supplementary materials

Br1—C3—C4—C5	176.59 (17)	C13-C14-C15-C10	0.7 (4)
C3—C4—C5—C6	0.8 (3)	C8-C7-C16-O1	25.1 (3)
C3—C4—C5—C7	-179.7 (2)	C5-C7-C16-O1	-158.0 (2)
C2-C1-C6-N1	178.8 (2)	C8—C7—C16—C17	-97.9 (3)
C2—C1—C6—C5	0.0 (4)	C5-C7-C16-C17	78.9 (3)
C4—C5—C6—N1	-179.2 (2)	O1—C16—C17—O2	167.5 (2)
C7—C5—C6—N1	1.2 (2)	C7—C16—C17—O2	-72.7 (3)
C4—C5—C6—C1	-0.1 (3)	O1-C16-C17-N2	-14.3 (3)
C7—C5—C6—C1	-179.7 (2)	C7-C16-C17-N2	105.5 (2)
C4—C5—C7—C8	179.5 (2)	C7—C8—N1—C6	0.4 (3)
C6—C5—C7—C8	-1.0 (3)	C7—C8—N1—C9	178.4 (2)
C4—C5—C7—C16	2.1 (4)	C1—C6—N1—C8	-180.0 (2)
C6—C5—C7—C16	-178.3 (2)	C5—C6—N1—C8	-1.0 (2)
C5—C7—C8—N1	0.4 (3)	C1—C6—N1—C9	1.9 (4)
C16-C7-C8-N1	177.8 (2)	C5—C6—N1—C9	-179.1 (2)
N1-C9-C10-C11	65.1 (3)	C10—C9—N1—C8	-101.6 (3)
N1-C9-C10-C15	-116.1 (3)	C10—C9—N1—C6	76.2 (3)
C15-C10-C11-C12	0.5 (4)	O2-C17-N2-C18	-0.7 (3)
C9—C10—C11—C12	179.4 (3)	C16—C17—N2—C18	-178.8 (2)
C10-C11-C12-C13	-0.3 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
N2—H2A…O1	0.87 (3)	2.32 (3)	2.682 (3)	105 (2)
C18—H18C···O1 ⁱ	0.96	2.57	3.395 (3)	144
N2—H2A····O2 ⁱⁱ	0.87 (3)	2.40 (3)	3.119 (3)	139 (3)
O1—H1···O2 ⁱⁱⁱ	0.91 (4)	2.02 (4)	2.839 (2)	149 (3)

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*+1; (ii) -*x*+1, *y*+1/2, -*z*+1; (iii) -*x*+2, *y*+1/2, -*z*+1.

Fig. 1

